If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2=19w+5
We move all terms to the left:
10w^2-(19w+5)=0
We get rid of parentheses
10w^2-19w-5=0
a = 10; b = -19; c = -5;
Δ = b2-4ac
Δ = -192-4·10·(-5)
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{561}}{2*10}=\frac{19-\sqrt{561}}{20} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{561}}{2*10}=\frac{19+\sqrt{561}}{20} $
| 8p+160=40p | | -9c=3–8c | | 2k2−5k−18=0 | | 31/4=1/3x-11/4 | | 81y=16(5+1) | | X+18+16x-2=130 | | −12n2−11n=−15 | | 4(2a+2)+-17=15 | | 5b-b=16 | | 0.20x=40 | | -7f=2f+9 | | 6(u-1)=-4u-36 | | 4+4y=3y+10 | | 5x-5=17-2x | | 7p+(3p+4)=(-2)(2p-1)+10 | | -5-7=-8+x | | 2•x+9=3 | | 7(x+1)-4=5x+2(1+x) | | 7=–11+3(b+5) | | 5n(n-3)=7+3n | | 2x+30=-20x+8 | | 8.7=3m-2.5(5.4-6m) | | 5f-3=9 | | 5x+2-4=-18 | | -7(x+2)-15=23+4 | | 6x+2=-6+3x+17 | | 70m-490=1330 | | 32=4+64x-16x^2 | | 6r+8=8+6r | | 35(2x+10)=140 | | -1/6v-7=-3 | | 70m+490=1,330 |